If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24000-8x^2=0
a = -8; b = 0; c = +24000;
Δ = b2-4ac
Δ = 02-4·(-8)·24000
Δ = 768000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768000}=\sqrt{25600*30}=\sqrt{25600}*\sqrt{30}=160\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160\sqrt{30}}{2*-8}=\frac{0-160\sqrt{30}}{-16} =-\frac{160\sqrt{30}}{-16} =-\frac{10\sqrt{30}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160\sqrt{30}}{2*-8}=\frac{0+160\sqrt{30}}{-16} =\frac{160\sqrt{30}}{-16} =\frac{10\sqrt{30}}{-1} $
| 5x+2x-4x-5=10 | | 12x=108. | | 6-22(p=6)=2 | | 8(v-5)=2 | | -3x-1=3x | | 14=2x^2-4x-8 | | x8;x=0.4 | | 10x+13x+17x=360 | | 1x/4+2=x-3 | | 29=p+27. | | 1200-25n=500 | | 7y=63. | | -n÷3-10=0 | | 103=69-7x+3x | | 1200+25n=500 | | Y=7x-36 | | 6=10h+ | | -3y+10=-3(2y+6) | | 7x-7+3x=103 | | 9x-6-5x=x+3+x | | 8-1/6x=10;-12 | | -2w-5w=4w-2w | | 39=x+7x+7 | | 1/3+b=3/4 | | 18-x-5x-11=9x+19-3x | | 3-6x+2x=-9 | | (2x+1/4)^2=9/6 | | 4/3+3x/2=-3x/2+23/6 | | v-1/5=-5/6 | | 9n-10n+8n=3 | | 9n-10n+8n=0 | | 3x+7+4x-18=180 |